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Europa

From  the 2013-2022 Visions and Voyages for Planetary 
Science report,

“…Jupiter’s icy moon Europa.  This moon, with its 
probable vast subsurface ocean sandwiched between a 
potentially active silicate interior and a highly dynamic 
surface ice shell, offers one of the most promising 
extraterrestrial habitable environments in our solar 
system…”

October 3, 2018
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Europa Clipper Mission

Flyby Mission
• 40-45 Flybys enables nearly global coverage over ~3 years
• 14 day orbit allows for downlink and recharge
• No Europa Orbit Insertion
• Minimizes time in the high radiation environment 

Science Payload – 9 instruments
• High resolution cameras and spectrometers
• Ice penetrating radar
• Magnetometer
• Thermal Imager

Europa

October 3, 2018
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Europa

Driving Materials Challenge
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Published in IEEE Trans. Nuc. Sci, 2017

Driving Materials Challenge
Radiation 

Europa
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Radiation 

October 3, 2018

From NASA-HDBK-4002A 
Mitigating in-Space Charging Effects ─ a Guideline

Hank Garrett and Al Whittlesey

Credit:  capturedlightening.com

Driving Materials Challenge
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min max
Spacecraft
Telecom Subsystem -230 125
GNC Subsystem -150 125
Power Subsystem -35 70
Avionics Subsystem -35 70
Radiation Monitoring Subsystem -35 75
Thermal Subsystem -105 400
Propulsion Subsystem -47 55
Mechanical Subsystem -200 135
Solar Array Assembly -240 135
Payload
EIS -75 70
E-Themis -75 70
Europa UVS -75 50
ICEMAG -165 105
MASPEX -35 70
MISE -35 70
PIMS -55 70
REASON -240 120
SUDA -35 70
Temp Extremes -240 400

Temperature, °CEuropa Hardware

Driving Materials Challenge
Thermal Environment
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Planetary Protection

October 3, 2018

Encap Surface Encap Surface Encap
Dry Ambient Uncontrolled

T ( C)
110 19.42 33.56 97.12 - 140.91 704.56 - -
116 10.06 15.58 50.30 74.65 116.53 582.64 - -
125 3.75 4.93 18.75 18.75 88.58 442.88 265.73 1328.63
150 0.28 0.28 1.43 1.43 8.08 40.42 24.25 121.27
200 0.01 0.01 0.05 0.05 0.07 0.34 0.20 1.01

Surface
3-Order Reduction 4-Order Reduction 6-Order Reduction

D (hours)

Driving Materials Challenge
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Materials Testing

• Electrical Connectors
• Adhesives
• UV / Electron / Proton Tests
• Thermal Control Coatings

October 3, 2018
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Electrical Connectors
Overview

• Aerospace connectors and harness materials for potential Clipper applications 
are exposed to Clipper level radiation and thermal environment to assess 
performance with the following:

• Planetary Protection (PP) Protocol 
• Internal Electrostatic Discharge (iESD) 
• Total Ionizing Dose (TID) 
• Thermal cycling

October 3, 2018
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Electrical Connectors
iESD testing

• Internal Electrostatic Discharge (iESD) testing summary
• Electron beam exposure conducted at JPL Dynamitron facility
• Mated connector pairs tested 
• 4x flux condition relative to the Europa iESD design environment
• Discharge detection through monitoring of connector pins using oscilloscopes 

October 3, 2018
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Electrical Connectors
iESD testing

October 3, 2018

Connector Mated Pair for iESD testing CH1 – 1 pin

CH2 – 2 pins

CH3 – 1 pin
CH4 – 2 pins
CH5 – 1 pin

CH6 – 1 pin
CH7 – 1 pin
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Electrical Connectors
iESD testing

October 3, 2018
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Electrical Connectors
iESD testing

• Summary of iESD test status
• Dsubs Connectors

• Small Dsub – completed at -75C
• Safe interface with HBM Class 3 rated 

electronics
• Large Dsub – completed at -75C

• Safe interface with HBM Class 3 rated 
electronics

October 3, 2018

Dsub Mated Pair
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Electrical Connectors
iESD testing

• Summary of iESD test status
• Circular D38999

• Small heritage circular – completed at -75C
• Safe interface with HBM Class 1A rated 

electronics 
• Large heritage circular – completed at -75C

• Safe interface with HBM Class 1C rated 
electronics 

October 3, 2018

Heritage Circular Mated Pair
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Electrical Connectors
iESD testing

• Summary of iESD test status
• Micro-D connectors

• Small Micro-D – completed at -167C
• Safe interface with HBM Class 1A rated 

electronics
• Large Micro-D – completed at -155C

• Safe interface with HBM Class 1A rated 
electronics 

October 3, 2018

Micro-D Mated Pair
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Electrical Connectors
iESD testing

October 3, 2018
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Electrical Connectors
iESD testing

October 3, 2018

Micro D

D-sub

Circular

Circular
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Electrical Connectors
Testing status

• Candidate connectors and harness materials for Clipper external vault 
applications are exposed to Clipper radiation and thermal environment to assess 
the following:

• Planetary Protection (PP) Protocol 
• Internal Electrostatic Discharge (iESD) 

• Follow-up testing being conducted
• Total Ionizing Dose (TID) exposure
• Thermal cycling

October 3, 2018

Connector Harness
Materials identification
And control
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Adhesives
Overview

• Aerospace adhesive materials for Clipper external radiation vault applications are 
evaluated after exposure to Clipper radiation and thermal environment 

• Radiation exposures
• From 40 Mrad to 100 Mrad

• Thermal cycle extremes:
• Relatively benign:  -35C to 75C
• Extreme:  Ambient to 195 C followed by Ambient to -230 C

October 3, 2018



jpl.nasa.govSlide 24

Adhesives
After extreme radiation and thermal cycle

October 3, 2018

Epoxy adhesives degrade after exposure to extreme rad dose 
but many still demonstrate structural capability
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Adhesives
After moderate radiation and thermal cycle

October 3, 2018

Some acrylic tape adhesives degrade significantly after exposure to moderate rad dose 
but others still demonstrate adequate capability for non-structural applications
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Adhesives
Test Status

• Work to go
• Testing tape adhesive systems in extreme environments
• Structural epoxy adhesive system testing after radiation at cold temperatures 

October 3, 2018
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UV / Electron / Proton Tests
Clipper Mission Simulation

October 3, 2018

• External surface materials on Europa Clipper Spacecraft will be exposed to very 
large doses of radiation

• Examples of surface materials and possible radiation effects
• Thermal control coatings – increase in absorption, cracking, delamination
• Multilayer insulation (MLI) – increase in thermo-optical properties, curling, shredding, 

decomposition
• Exposed optics and coatings – darkening, crazing, loss in transmission
• Solar cell coverglass materials – see above
• Metallics – generally unaffected except at extremely high radiation dose

• Candidate materials were exposed to simulated Europa Clipper Mission radiation 
and evaluated thermo-optical property effects
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UV / Electron / Proton Tests
Material Candidates

October 3, 2018

Description
In-situ 

Measurement
AZ-2100IECW White Inorganic "Conductive" Coating x
S13GP:6N/LO-1 [1] White Organic Coating x
Z-93C55 White Inorganic "Conductive" Coating x
AZ-2000IECW White Inorganic "Conductive" Coating x
Z-93P [1] White Inorganic Coating x

Aeroglaze Z307 Black Organic "Conductive" Coating
MH21:6NC/LO Black Organic "Conductive" Coating
MH21:6N/LO Black Organic Coating
MH55ICP Black Inorganic "Conductive" Coating

12 mil coverglass/AR/ITO coverglass x
8 mil coverglass/AR coverglass x
20 mil coverglass/AR/ITO coverglass x
20 mil coverglass/AR coverglass x
17 mil coverglass/AR coverglass x
Coated Black Kapton Coated carbon loaded PI x
Black Kapton Carbon loaded PI x
Embossed Aluminized Kapton Double side aluminized PI
White coated Kapton White “Conductive” coated PI x
Anodize [2] Sulfuric acid anodize x
Chem Film[2] Chemical conversion coating x

Notes:
[1] Sample modified with PP sterilization
[2]

Thermal Control Coatings

Cover Glass

MLI Materials

Misc

Included fewer replicates for exposures and in-situ measurements

Candidates
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UV / Electron / Proton Tests
Clipper Mission Simulation

October 3, 2018

• Mission Environments
• Interplanetary space environment
• Jovian tour
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UV / Electron / Proton Tests
Clipper Mission Simulation

October 3, 2018

• Environment Simulation
• Interplanetary space environment 

• Protons concurrent with broadband and vacuum-UV illumination
• 4500 ESH 

• Jovian tour
• Mission energy deposition as a function of depth (dose-depth) profile calculated for 4 

representative candidate materials
• A series of mono-energetic charged particles fluences were used to simulate the calculated 

mission dose 
• Scaling employed so that the net contribution in the materials would match electron or proton 

mission dose-depth
• Radiation Design Factor of 2 was applied for charged particle fluences
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UV / Electron / Proton Tests
Environment Simulation

October 3, 2018
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UV / Electron / Proton Tests
Environmental Simulation

October 3, 2018

• Simulation Facilities – Aerospace Corporation
• Mid-Energy Proton Exposures 

• Aerospace’s Low-Energy Accelerator Facility (LEAF)
• Used to simulate a portion of the energy deposition in the test materials
• Ex-situ measurements

• UV/Low-Energy Electron/Proton Exposures
• Aerospace’s Research and Development of Radiation Deposition (R2D2)
• Broadband solar and Vacuum UV radiation 
• Low to mid-energy electrons
• Low to mid-energy protons
• Auxiliary measurement chamber for in-situ optical property measurements (solar absorptance

and transmittance)
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UV / Electron / Proton Tests
LEAF Sample Plates

October 3, 2018
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UV / Electron / Proton Tests
R2D2 Sample Plates

October 3, 2018

Sample plates mounted inside R2D2
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UV / Electron / Proton Tests
In-Situ Solar Absorptance Changes

October 3, 2018
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UV / Electron / Proton Tests
IR Emissivity Changes

October 3, 2018
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UV / Electron / Proton Tests
Percent changes in coverglass transmission

October 3, 2018
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UV / Electron / Proton Tests
Noteworthy visual changes

October 3, 2018

S13GP:6N/LO-1

Z93C55

Black KaptonWhite coated Kapton

AZ2000IECW 
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UV / Electron / Proton Tests
Noteworthy visual changes

Coverglass

AR only - coated coverglass (right)
AR/ITO-coated coverglass (left)
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Thermal Control Coatings
Overview

• Thermal Control Coating Evaluations
• Optical Property Effects
• Total Ionizing Dose Radiation and thermal cycling survivability 
• Electrostatic Discharge evaluation

• Candidates
• White organic and inorganic, electrically dissipative, low absorptivity coatings
• Black organic and inorganic, electrically dissipative, high emissivity coatings

October 3, 2018
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Thermal Control Coatings
Status

• Optical Property Effects
• See previous section

• TID Radiation and thermal cycling survivability – in progress
• Subject select coatings to 2x TID radiation and encompass expected thermal 

cycling 
• Evaluate survivability using adhesion tests

• ESD evaluation – in progress 
• Conduct discharge testing

October 3, 2018
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Thermal Control Coatings
ESD testing

October 3, 2018
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